
Development Tools II

Alfred Gil

HPC Expert

HPC Users Training

September, 18th 2015

HPC Users Training - DIPC - 2015

1. Debugging

2. Optimizing, profiling

3. Parallelization

HPC Users Training - DIPC - 2015

HPC Users Training - DIPC - 2015

1. Debugging

2. Optimizing, profiling

3. Parallelization

HPC Users Training - DIPC - 2015

HPC Users Training - DIPC - 2015

The first computer bug

Moth found trapped at Mark II Relay Calculator, while being
tested at Harvard in 1947. The machine was “debugged”

HPC Users Training - DIPC - 2015

Debugging tools

• Features / Advantages
• No need to rebuild code
• Print out values of variables in a conveniently

way
• Monitoring variables automatically
• Where in the program an error occurs

(segmentation fault)
• Where the function which generates the error

was called from

HPC Users Training - DIPC - 2015

Debugging tools

• Which one?
• gdb
• idb
• pgdbg
• IDE's

HPC Users Training - DIPC - 2015

General strategy

• Compile program with -g option
• Information about variables, functions, line

numbers...
• Optimization options are not recommended

• Start debugger and load program
• Program will run under debugger

HPC Users Training - DIPC - 2015

General strategy

• Set breakpoints
• Execution will pause, variables can be

checked, especially array indices, pointers...
• Resume execution step by step, or until the

next breakpoint
• Follow the flow or execution
• See at which point a variable changes its value
• Which part of if-then-else constructs are

executed

• Segmentation faults
• Don't set breakpoints, wait for the program to

fail. Debugger will tell you where it happened

HPC Users Training - DIPC - 2015

GDB commands

• gdb filename
• filename is the executable file, compiled with -

g option

• r run
• command-line arguments should be included
• example

• r < input_file

HPC Users Training - DIPC - 2015

GDB commands

• l list
• lists parts of the source file
• examples

• l 37
• l main.c:12
• l function_name

• b breakpoint
• pause at the specified place
• examples

• b 127
• b main
• b 72 i > 10

HPC Users Training - DIPC - 2015

GDB commands

• s step
• continue running after a break, execute only

one source line

• n next
• continue to the next source line in the current

stack frame

• bt backtrace
• show the call stack, one line per frame

HPC Users Training - DIPC - 2015

GDB commands

• f frame
• select a frame different from the currently

selected

• p print
• shows the value of a variable

HPC Users Training - DIPC - 2015

1. Debugging

2. Optimizing, profiling

3. Parallelization

HPC Users Training - DIPC - 2015

HPC Users Training - DIPC - 2015

Optimization

• Modifying a system to work more
efficiently or use fewer resources

• Code optimization
• Platform dependent

• Instruction level parallelism
• Data level parallelism
• Cache optimization techniques

• Platform independent
• Loop unrolling
• Reduction in function calls
• Memory efficient routines

HPC Users Training - DIPC - 2015

Optimization

• Levels
• Design level

• Using efficient algorithms
• Compile level

• Use a profiler to find bottleneck
• section of program taking the most resources

• Rethink the algorithm: Could it be
improved?

HPC Users Training - DIPC - 2015

Optimization

• Code optimization
• loop unrolling
• data types as small as possible
• integer arithmetic instead of floating point
• use numerical libraries whenever it's possible
• avoid most expensive operations: floating

point comparison and division
• Explode use of fast operations: floating-point

multiply-add

HPC Users Training - DIPC - 2015

Optimization remarks

• 90/10 law
• 90% of the time is spent in 10% of the code
• Optimizing a small part can have a huge effect

on the overall speed

• Compilers can do the hard work
• Optimization options

HPC Users Training - DIPC - 2015

Optimization remarks

• General strategy
• Compile without options to get a correct code
• Compile with basic optimization. Check results
• Localize the most consuming routines
• Compile at higher level of optimization. Check

results

HPC Users Training - DIPC - 2015

Profiling or performance analysis

• Investigation of program's
behavior using information
gathered as the program executes
• Determine which sections of a program to

optimize
• Measures of frequency and duration of

function calls
• Output obtained

• stream of recorded events: trace
• statistical summary: profile

HPC Users Training - DIPC - 2015

Profiling or performance analysis

• Which one?
• gprof
• Intel Vtune
• pgprof

HPC Users Training - DIPC - 2015

Using gprof

• Compile and link program with -pg
option
• Generates profile information for the program

• Execute program to generate
profile data
• Run the program as usual
• Writes profile data file gmon.out into the

current working directory

HPC Users Training - DIPC - 2015

Using gprof

• Run the analyzer to interpret
profile data
• gprof options [executable-file [profile-data-

files]] [> outfile]
• Result contains two tables

• Flat profile: How much time the program spent
in each function, and how many times that
function was called

• Call graph: For each function, which functions
called it, which other function it called, and how
many times. Estimation of how much time was
spent in the subroutines of each function

HPC Users Training - DIPC - 2015

1. Debugging

2. Optimizing, profiling

3. Parallelization

HPC Users Training - DIPC - 2015

HPC Users Training - DIPC - 2015

Parallel programming

• Parallelism should be seen as
another kind of optimization
method

• More than one processor is used in
order to improve the program
performance

HPC Users Training - DIPC - 2015

Parallel programming

• Wall clock time is reduced

• CPU time could increase
• longer source files
• communication and synchronization between

processors

HPC Users Training - DIPC - 2015

Speed-up

• Ideally, a program executed in P
processors should run P times
faster than in one processor
• Speed-up S(P) = T(1)/T(P) → P

• Actually, portions of program
which cannot be parallelized limit
the overall speed
• Speed-up S(P) = P – α (P-1)

HPC Users Training - DIPC - 2015

Speed-up

• S(P) diminish beyond a given Popt:
race conditions, synchronizations,
parallel slowdown…
• memory and communication issues

• Good scalability: High Popt

HPC Users Training - DIPC - 2015

Shared memory

• All processors have the whole
memory at its disposal

• Data transfer is transparent
• Implicit synchronization

HPC Users Training - DIPC - 2015

Distributed memory

• Each processor have access to its
own memory

• Data transfer should be
programmed explicitly

• Synchronization should be done by
programmers

HPC Users Training - DIPC - 2015

Parallel programming models

• Shared memory programming
models communicate by
manipulating shared memory
variables
• OpenMP

• Distributed memory models use
message passing
• MPI

HPC Users Training - DIPC - 2015

Parallel programming models

• Nevertheless, it is possible to
implement shared memory models
at distributed memory machines

• Likewise, MPI can run efficiently in
a shared memory machine

HPC Users Training - DIPC - 2015

MPI vs OpenMP

• MPI
• Standard of distributed memory
• Sources should be modified to include calls to

message passing libraries
• Code should be compiled linking with

parallelization libraries

• OpenMP
• Consist of compiler directives
• Easier to program than MPI
• Functions are included in a header file, not

need to link at compilation time

HPC Users Training - DIPC - 2015

Automatic parallelization

• Only loops are parallelized
• Parallelization of save loops

(without dependencies)
• Usually works fine, and limitations

are imposed by the compiler
• Always check for correct results!
• Control is achieved by compiler

options and directives

Development Tools II

Thanks for your attention
Alfred Gil, PhD

HPC Expert
alfred.gil@hpcnow.com

www.hpcnow.com

