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The first computer bug

Moth found trapped at Mark II Relay Calculator, while being 
tested at Harvard in 1947. The machine was “debugged”
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Debugging tools

• Features / Advantages
• No need to rebuild code
• Print out values of variables in a conveniently 

way
• Monitoring variables automatically
• Where in the program an error occurs 

(segmentation fault)
• Where the function which generates the error 

was called from
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Debugging tools

• Which one?
• gdb
• idb
• pgdbg
• IDE's



HPC Users Training - DIPC  - 2015

General strategy

• Compile program with -g option
• Information about variables, functions, line 

numbers...
• Optimization options are not recommended

• Start debugger and load program
• Program will run under debugger
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General strategy

• Set breakpoints
• Execution will pause, variables can be 

checked, especially array indices, pointers...
• Resume execution step by step, or until the 

next breakpoint
• Follow the flow or execution
• See at which point a variable changes its value
• Which part of if-then-else constructs are 

executed

• Segmentation faults
• Don't set breakpoints, wait for the program to 

fail. Debugger will tell you where it happened
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GDB commands

• gdb filename
• filename is the executable file, compiled with -

g option

• r run
• command-line arguments should be included
• example

• r < input_file
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GDB commands

• l list
• lists parts of the source file
• examples

• l 37
• l main.c:12
• l function_name

• b breakpoint
• pause at the specified place
• examples

• b 127
• b main
• b 72 i > 10
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GDB commands

• s step
• continue running after a break, execute only 

one source line

• n next
• continue to the next source line in the current 

stack frame

• bt backtrace
• show the call stack, one line per frame
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GDB commands

• f frame
• select a frame different from the currently 

selected

• p print
• shows the value of a variable
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Optimization

• Modifying a system to work more 
efficiently or use fewer resources

•  Code optimization
• Platform dependent

• Instruction level parallelism
• Data level parallelism
• Cache optimization techniques

• Platform independent
• Loop unrolling
• Reduction in function calls
• Memory efficient routines
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Optimization

• Levels
• Design level

• Using efficient algorithms
• Compile level

• Use a profiler to find bottleneck
• section of program taking the most resources

• Rethink the algorithm: Could it be 
improved?
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Optimization

• Code optimization
• loop unrolling
• data types as small as possible
• integer arithmetic instead of floating point
• use numerical libraries whenever it's possible
• avoid most expensive operations: floating 

point comparison and division
• Explode use of fast operations: floating-point 

multiply-add
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Optimization remarks

• 90/10 law
• 90% of the time is spent in 10% of the code
• Optimizing a small part can have a huge effect 

on the overall speed

• Compilers can do the hard work
• Optimization options
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Optimization remarks

• General strategy
• Compile without options to get a correct code
• Compile with basic optimization. Check results
• Localize the most consuming routines
• Compile at higher level of optimization. Check 

results



HPC Users Training - DIPC  - 2015

Profiling or performance analysis

• Investigation of program's 
behavior using information 
gathered as the program executes
• Determine which sections of a program to 

optimize
• Measures of frequency and duration of 

function calls
• Output obtained

• stream of recorded events: trace
• statistical summary: profile
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Profiling or performance analysis

• Which one?
• gprof
• Intel Vtune
• pgprof
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Using gprof

• Compile and link program with -pg 
option
• Generates profile information for the program

• Execute program to generate 
profile data
• Run the program as usual
• Writes profile data file gmon.out into the 

current working directory
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Using gprof

• Run the analyzer to interpret 
profile data
• gprof options [executable-file [profile-data-

files]] [> outfile]
• Result contains two tables

• Flat profile: How much time the program spent 
in each function, and how many times that 
function was called

• Call graph: For each function, which functions 
called it, which other function it called, and how 
many times. Estimation of how much time was 
spent in the subroutines of each function
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Parallel programming

• Parallelism should be seen as 
another kind of optimization 
method

• More than one processor is used in 
order to improve the program 
performance
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Parallel programming

• Wall clock time is reduced

• CPU time could increase
• longer source files
• communication and synchronization between 

processors
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Speed-up

• Ideally, a program executed in P 
processors should run P times 
faster than in one processor
• Speed-up S(P) = T(1)/T(P) → P

• Actually, portions of program 
which cannot be parallelized limit 
the overall speed
• Speed-up S(P) = P – α (P-1)
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Speed-up

• S(P) diminish beyond a given Popt:  
race conditions, synchronizations, 
parallel slowdown…
• memory and communication issues

• Good scalability: High Popt
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Shared memory

• All processors have the whole 
memory at its disposal

• Data transfer is transparent
• Implicit synchronization
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Distributed memory

• Each processor have access to its 
own memory

• Data transfer should be 
programmed explicitly

• Synchronization should be done by 
programmers
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Parallel programming models

• Shared memory programming 
models communicate by 
manipulating shared memory 
variables
• OpenMP

• Distributed memory models use 
message passing
• MPI
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Parallel programming models

• Nevertheless, it is possible to 
implement shared memory models 
at distributed memory machines

• Likewise, MPI can run efficiently in 
a shared memory machine
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MPI vs OpenMP

• MPI
• Standard of distributed memory
• Sources should be modified to include calls to 

message passing libraries
• Code should be compiled linking with 

parallelization libraries

• OpenMP
• Consist of compiler directives
• Easier to program than MPI
• Functions are included in a header file, not 

need to link at compilation time



HPC Users Training - DIPC  - 2015

Automatic parallelization

• Only loops are parallelized
• Parallelization of save loops 

(without dependencies)
• Usually works fine, and limitations 

are imposed by the compiler
• Always check for correct results!
• Control is achieved by compiler 

options and directives
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